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Using Multimodal Contrastive Knowledge
Distillation for Video-Text Retrieval

Wentao Ma , Qingchao Chen , Tongqing Zhou , Shan Zhao, and Zhiping Cai

Abstract— Cross-modal retrieval aims to enable a flexible
bi-directional retrieval experience across different modalities
(e.g., searching for videos with texts). Many existing efforts tend
to learn a common semantic representation embedding space in
which items of different modalities can be directly compared,
wherein the positive global representations of video-text pairs
are pulled close while the negative ones are pushed apart
via pair-wise ranking loss. However, such a vanilla loss would
unfortunately yield ambiguous feature embeddings for texts of
different videos, causing inaccurate cross-modal matching and
unreliable retrievals. Toward this end, we propose a multimodal
contrastive knowledge distillation method for instance video-
text retrieval, called MCKD, by adaptively using the general
knowledge of self-supervised model (teacher) to calibrate mixed
boundaries. Specifically, the teacher model is tailored for robust
(less-ambiguous) visual-text joint semantic space by maximizing
mutual information of co-occurred modalities during multimodal
contrastive learning. This robust and structural inter-instance
knowledge is then distilled, with the help of explicit discrimina-
tion loss, to a student model for improved matching performance.
Extensive experiments on four public benchmark video-text
datasets (MSR-VTT, TGIF, VATEX, and Youtube2Text) demon-
strate that our MCKD can achieve at most 8.8%, 6.4%, 5.9%,
and 5.3% improvement in text-to-video performance by the R@1
metric, compared with 14 SoTA baselines.

Index Terms— Cross-modal retrieval, contrastive learning,
knowledge distillation.

I. INTRODUCTION

WITH the rapid development of mobile Internet and
digital media, multimedia data with video as the carrier

is generated in cyberspace (such as YouTube and TikTok
platforms) all the time. Video-text cross-modal retrieval [1],

Manuscript received 23 August 2022; revised 4 December 2022;
accepted 4 March 2023. Date of publication 14 March 2023; date of current
version 4 October 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 62072465, Grant 62172155,
Grant 62102425, and Grant 62201014; in part by the Science and Technology
Innovation Program of Hunan Province under Grant 2022RC3061 and Grant
2021RC2071; and in part by the Postgraduate Research and Innovation
Project of Hunan Province under Grant CX20210080. This article was recom-
mended by Associate Editor Y. Qin. (Corresponding authors: Qingchao Chen;
Zhiping Cai.)

Wentao Ma, Tongqing Zhou, and Zhiping Cai are with the College of
Computer Science, National University of Defense Technology, Chang-
sha 410073, China (e-mail: wtma@nudt.edu.cn; zhoutongqing@nudt.edu.cn;
zpcai@nudt.edu.cn).

Qingchao Chen is with the National Institute of Health Data Science, Peking
University, Beijing 100091, China (e-mail: qingchao.chen@pku.edu.cn).

Shan Zhao is with the School of Computer and Information Engi-
neering, Hefei University of Technology, Hefei 230009, China (e-mail:
2022800040@hfut.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2023.3257193.

Digital Object Identifier 10.1109/TCSVT.2023.3257193

Fig. 1. An illustration of potentially ambiguous semantic boundaries
between texts to describe different videos. The same shape indicates relevant
semantics. Colors represent modalities (i.e., video and text). Assume that
V1 = {v1

1 , v2
1 , . . . , vi

1} and V2 = {v1
2 , v2

2 , . . . , vi
2} represent the video contain-

ing i views (sequence frames), whose corresponding text sentence description
sets are T1 = {t1

1 , t2
1 , . . . , t i

1} and T2 = {t1
2 , t2

2 , . . . , t i
2}, respectively. If the

text annotations are partially aligned with their corresponding video concepts
(a.k.a., “Semantic Ambiguous Region” in the Figure), which may bring a
spurious correlation between the text and the non-corresponding video.

[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17] as a promising data management technique
has attracted attention in both the community of academia
and industry. This technique aims to harness one modality as
a probe to search instances from another modality: retrieving
the videos by a text description (text-based video retrieval) or
retrieving the text descriptions that are most relevant to the
video content (video-based text retrieval).

In recent years, the pair-wise ranking loss is a popular
objective function used in a broad range of tasks about video-
text cross-modal retrieval [1], [4], [18], [19], which makes
the distance between positive sample pairs smaller than the
distance between negative ones by a pre-defined margin.
As known, existing methods [1], [3], [4], [6], [7] adopt the
pair-wise ranking loss focus on the distance between global
representations of video and text. However, we argue that
vanilla global representation alignment using the pair-wise
ranking loss is challenging and sometimes ill-suited for video-
text retrieval in realistic practice. As semantic concepts in
the videos are complex, it commonly exists in video-text
retrieval benchmarks [3], [20], [21], [22] that multiple text
sentences are able to describe the same video from different
views. Therefore, the multi-view text representations bring a
unique challenge to pair-wise ranking loss: semantic bound-
aries between texts to describe different videos are potentially
ambiguous, as shown in Fig. 1. It is because if text annotations
are only partially aligned with their corresponding video
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Fig. 2. A simple visual demonstration of the latent embedding spaces learned
via different methods. The same shape indicates relevant semantics and colors
represent modalities. Different from the existing methods, i.e., HGR [4]), our
proposed MCKD defines a “video/text group” as a video with its associated
sentences. Therefore, in the training stage, we treat every “video/text group” as
a different instance category to yield multimodal contrastive in intra-instance.

concepts, the partial alignment brings a spurious correlation
between texts and their non-corresponding videos. That is,
text annotations of the corresponding videos are not equally
reliable as the “positive pairs” in the pair-wise ranking loss.
Existing solutions relying on unreliable positive pairs, there-
fore, bring unstable optimization and also collapsed joint
visual-text semantic space for visual-text retrieval.

In light of the above analysis, to maintain the reliable yet
discriminative visual-text joint semantic space, it is essential
to capture the semantic relationship between the text features
and their corresponding visual features, enabling better-curated
and reliable positive and negative pairs. By pulling reliable
positive sample pairs considering their relationships and push-
ing unreliable ones, we propose a Multimodal Contrastive
Knowledge Distillation (MCKD) model to transfer the reli-
able and structural inter-instance information, regularizing the
cross-modal joint semantic space in parallel with the usage
of pair-wise ranking loss. In essence, this procedure can
maximize the consistency of mutual information between the
intrinsic co-occurrence modalities to bridge the heterogeneous
gap between different modalities and excavate the discrimina-
tion from intra- and inter-instance.

Concretely, there is ambiguity in semantic boundaries
between texts describing different videos, which is obviously
undesirable for instance-level cross-modal retrieval tasks.
To suppress this unreliable semantic text representation, sim-
ilar to [19] and [23], our MCKD names the video and its
associated text sentence an “video/text group”. This is based
on the strong assumption that every “video/text group” is a
different instance category, namely, it can be treated as a
distinct instance, as shown in Fig. 2. Then, considering that
multimodal data intrinsically consists of multiple modalities,
inspired by recent works [8], [24], [25], we propose to learn
feature representations by maximizing consistency between
different modalities in the visual-text semantic embedding
space, which is a self-supervised manner to implement the
classification of video/text groups. Our end is to carry out
this model to discriminate between every two videos and two
texts from distinct groups. It is beneficial to investigate the
stability of video-text semantic space, that is, to eliminate
unreliable text representation. It’s worth noting that “video/text
group” can avoid the risk about the collapse of joint vision-text

semantic space, which leads to discriminants of multiple
text sentences (different views corresponding to the same
video), for example, “two dogs are chasing on the lawn”
is semantically equivalent to “two dogs on the lawn” after
multimodal contrastive learning. Hence, the pair-wise ranking
loss is leveraged to preserve discrimination between texts in
intra-instance.

Furthermore, the pair-wise ranking loss employs pre-defined
hard similarity to determine positive and negative pairs. How-
ever, the hard similarity may discard intra- and inter-instance
correlations. Inspired by [18], [19], [23], and [24], our model
also discusses the practice of “soft label” in video-text match-
ing. Briefly, we leverage the knowledge distillation module [8],
[18], [26], [27], [28] to combine the advantages of multimodal
contrastive loss and pair-wise ranking loss. That is, multimodal
contrastive loss works by narrowing the heterogeneous gap and
then provides the “soft label” supervised signal for pair-wise
ranking loss to preserve the discrimination between instance
texts. The main contributions of this work are summarized as
follows:

• We propose a novel framework for video-text cross-modal
retrieval to bridge the gap between distinct modalities.
That is, it can effectively learn the discriminative feature
representations for heterogeneous data.

• To maintain a reliable yet discriminative visual-text joint
semantic space, we propose a multimodal contrastive
loss of video-text matching to suppress ambiguous text
semantic representations, which can provide robust and
structured inter-instance sample signals.

• We propose a pair-wise ranking loss with the “soft label”
distillation signal to preserve discrimination between text
intra-instance. Namely, the knowledge distillation module
is adopted to transfer the reliable and structural inter-
instance information, regularizing the cross-modal joint
semantic space in parallel with the usage of pair-wise
ranking loss.

• We evaluate our MCKD via the comparison with 14 State-
of-The-Art (SoTA) baselines and a series of ablation
studies. The extensive experimental results show that
MCKD can yield promising performance (a.k.a., R@1
of 13.8%, 6.8%, 39.6%, and 19.1% on MSR-VTT, TGIF,
VATEX, and Youtube2Text, respectively.)

The remainder of this manuscript is structured as follows.
First, we briefly review the most related works to our method
in Section II. Section III introduces the multimodal contrastive
knowledge distillation model. Then, we present the experimen-
tal settings and analysis of the corresponding experimental
results in Section IV and V. Finally, conclusions are given in
Section VI.

II. RELATED WORK

In this section, we review the video-text retrieval, con-
trastive learning, and knowledge distillation that are most
relevant to our work. Meanwhile, to facilitate a comparison of
the proposed MCKD with existing methods, we briefly list the
differences in technical components and functional modules,
as shown in Appendix A.
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A. Video-Text Retrieval

Early concept-based efforts promote the development of
video-text retrieval techniques [12], [13], but they are still hard
to fully explore the diversity and rich fine-grained semantic
representation of video-text within limited concepts. For fine-
grained video-text cross-modal retrieval, graph-free [3], [5],
[6], [7], [8], [10], [11], [15], [29], [30], [31] and graph-based
paradigms [1], [4], [16], [17], [32] are used to jointly encode
video and text feature representations into a common embed-
ding semantic space then the effective video-text matching is
realized.

1) Graph-Free Paradigm: To capture coarse-to-fine-grained
and spatio-temporal feature representations, Dong et al. [5]
propose a three-branch method that utilizes mean pooling,
BiGRU, and CNN to encode visual-text feature with multi-
level granularity. To bridge the heterogeneous gap between
visual-text, they present a hybrid embedding space [31],
which represents the richness of both modalities coarse-to-
fine by multi-level encoding and harnesses hybrid spatial
learning to better align cross-modal matching. Yang et al. [7]
design a video-text retrieval framework that consists of a
tree-augmented text encoder and a temporal attentive video
encoder. This method enables better alignment by transforming
text containing semantic information into an easy-to-interpret
structure. Yu et al. [29] present a JSFusion, which is composed
of joint semantic tensor module and convolutional hierarchical
decoder module to estimate video-text hierarchical semantic
similarity and realize multi-level semantic similarity fusion.
Another, Liu et al. [15] propose a PSM model to optimize
the visual-text semantic representation space, which employs a
progressive learning strategy with a coarse-to-fine architecture
to narrow the semantic gap between distinct modalities. Wang
et al. [11] design an efficient multi-level alignment model of
feature representation for video-text retrieval, called T2VLAD,
which enables the meticulous local comparison while reducing
the computational overhead of semantic representation inter-
action between each video-text pair.

2) Graph-Based Paradigm: Alternatively, some researchers
focus on adopting graph modeling to generate fine-grained
semantic relationships of visual-text representations.
Feng et al. [32] propose a visual semantic enhanced inference
model, called ViSERN, which utilizes graph convolutional
networks based on random walk rules to learn semantic
inference. Chen et al. [4] (HGR), Jin et al. [1] (HCGC), and
Ma et al. [17] (QAMF) disentangle the feature representation
of video-text pair into multiple levels and fuse the video-text
matching of different levels respectively. In particular, HGR
utilizes a semantic graph, attention layer, and full connection
layer to parse video-text pairs into a hierarchical semantic
graph including events, actions, and entities respectively.
Meanwhile, the multiple embedding common spaces of
representation are used to calculate the average similarity
and then fused as the final similarity. Considering the
graph consistency of multi-level matching, HCGC designs a
learning model for multi-level graph consistency to enhance
the intra-graph and inter-graph interaction consistency. The
HGR and HCGC achieve promising performance in video-text

matching, but both efforts fail to realize adaptive fusion,
QAMF proposes a query-adaptive fusion mechanism to enable
differential fusion of multi-level semantic representation.
Meanwhile, to address the asymmetry of video-text feature
representations, Wu et al. [16] design a HANet to align the
representations of different levels, which realizes semantic
coverage cross-modal data from coarse-to-fine. However,
these methods achieve remarkable performance via complex
graph modeling, they hardly enable high efficiency of
video-text matching.

B. Contrastive Learning

Contrastive learning is a framework that can learn feature
representations with strong discriminative to improve the
performance of downstream tasks, the core idea of which
is to draw the same instance closer to each other under
pre-defined marginal metrics and push apart ones between
different instances [25], [33].

As we all know, contrastive learning has achieved outstand-
ing results in multimodal applications, such as cross-modal
retrieval [10], [24], [34], [35]. Zhang et al. [10] investigate
a heuristic model, ReLoCLNet, which leverages two con-
trastive losses to realize moment retrieval tasks with a decent
performance. Nevertheless, this method only considers the
hierarchical inter-modal consistency, ignoring the consistency
of intra-modal. Another, to mitigate the influence of noisy
labels in cross-modal retrieval, Hu et al. [24] propose a novel
multimodal robust learning framework for image-text match-
ing with noisy labels via supervised robust clustering and
multimodal contrastive. However, this supervised clustering
method with noise label suppression also tends to fit the
wrong labels to shift cluster centers in the process of model
iteration. Thus, Zhang et al. [35] propose an intra-modal
contrastive learning criterion for robust feature embedding
by maximizing the similarity among samples with the same
labels. Although these approaches have achieved non-trivial
results by contrastive loss, learning semantic alignments
between videos and texts is more challenging since videos
are more complex temporal-spatial representation information
than images. Reference [34] is the first implementation of the
Contrastive Language-Image Pre-training (CLIP) model for
video-text cross-modal retrieval, to capture the semantic inter-
action between video and text modality. This method, however,
is a zero-shot task, leveraging the power of CLIP’s visual
representation without the need for parameter fine-tuning. As a
result, there is still much room for improvement in deployment
of video-text retrieval tasks based on contrastive learning.

Consequently, inspired by the recent works [10], [24], [34],
[35], we present a multimodal contrastive loss, which names
the video and its associated text sentence an “video/text
group” according to the property of multimodal data. Then it
explicitly and fully considers the intra-modal data distribution
to compensate for the drawback of pair-wise ranking loss.

C. Knowledge Distillation

Knowledge distillation is essentially a model-agnostic com-
pression strategy used to generate efficient models while
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Fig. 3. An overview of the proposed MCKD model, which consists of two modules: multimodal contrastive learning as teacher model (shown in top
part of the figure) and the pair-wise ranking loss as student model (in bottom part of the figure). The teacher model leverages multimodal contrastive loss,
which mitigates the cross-modal discrepancy and tries to maximally scatter inter-modal samples while compacting intra-modal points over the common unit
sphere/space, thus eliminating the unreliable text representation. Meanwhile, the teacher model transfers the reliable and structural inter-sample information
(a.k.a., similarity matrix S), regularizing the cross-modal joint semantic space in parallel with the usage of pair-wise ranking loss.

preserving performances in a teacher-student paradigm, that
is, transferring knowledge extracted from trained models to
another model as a supervised signal. Since the early success
of knowledge distillation in computer vision [27], it has
been accepted for a broad range of applications, such as
recommendation systems and cross-modal retrieval.

For recommendation systems [26], several works adopt the
knowledge distillation to complete downstream tasks. Tang
and Wang [26] propose a ranking distillation for a recommen-
dation system, which can generate compact ranking models
and improve efficiency. While for cross-modal retrieval [8],
[18], [28], [36], some studies use a heuristic teacher-student
paradigm that brings a remarkable performance. Hu et al. [28]
proposes a novel unsupervised cross-modal hashing, which
utilizes the unsupervised teacher model to extract extensive
interaction information and transmit robust guidance signals
to the student model, obtaining better cross-modal matching
performance. Yet, considering that existing methods all require
large-scale annotated information, Li et al. [18] designs a
framework of cross-modal hashing retrieval based on knowl-
edge distillation, called KDCMH, which extracts similarity
supervised signals in an unsupervised manner to guide the
student model. The most similar work to ours is Croitoru
et al. [8], which investigates a novel generalized distilla-
tion method, TEACHTEXT, to explore the effectiveness of
large-scale language pre-training models in video-text cross-
modal retrieval tasks. However, this method not only brings
great computational overhead but also ignores inter-instance

consistency. Therefore, in this work, we combine the advan-
tages of pair-wise ranking loss and multimodal contrastive loss
via the knowledge distillation module, which builds a robust
yet discriminative visual-text joint semantic space, enabling
better-curated and reliable positive and negative pairs.

III. THE PROPOSED MCKD MODEL

In this section, we will elaborate on our proposed MCKD
model. First, we briefly introduce the problem definition
and notation (Section III-A). Then, we demonstrate the
specific pipeline module of MCKD, including distillation
supervision signal (Section III-B), reviews of pair-wise rank-
ing loss (Section III-C), and multimodal contrastive loss
(Section III-D).

A. Problem Definition and Notation

Without losing the generality of cross-modal matching,
our MCKD focuses on feature representation for video-text
bimodal data. That is, for the given set of videos (or video
clips) and a set of texts, the MCKD is to harness one modality
as a query to search all semantically related instances from
another modality. Fig. 3 shows the framework of MCKD,
which mainly consists of two modules: multimodal contrastive
loss (teacher model) and supervised pair-wise ranking loss
(student model). Meanwhile, for readability and clarity, some
of the notations adopted in our paper and their definitions are
described in Table I. We introduce each part in detail in the
following.
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TABLE I
KEY NOTATIONS

B. Distillation Supervision Signal

The basic working principle of knowledge distillation is
to adopt a complex model (teacher) to guide a lighter model
(student) for collaborative training. In this work, we propose
a multimodal contrastive knowledge distillation module to
transfer the reliable and structural inter-instance information
S to the student model with pair-wise ranking loss. In terms
of cross-modal retrieval, most existing attempts tend to learn
a common semantic representation embedding space in which
items of different modalities can be compared to each other
via a pre-defined margin. Namely, The pre-defined hard label
similarity is denoted as S ∈ {0, 1}

n×n wherein n is the
number of instances and Sxy = 1 indicates the corresponding
pair under index (x, y) is a positive one, while the soft
label similarity is denoted as S ∈ [0, 1]

n×n with Sxy a real
value between [0, 1]. An overview of soft label similarity
and hard label similarity is shown in Fig. 4. In our MCKD,
the supervised signal output from the multimodal contrastive
teacher model is the soft label similarity matrix S ∈ [0, 1]

n×n .
Hence, compared with the training hard label similarity, the
soft label similarity output via the knowledge distillation
module of the MCKD not only contains the similarity infor-
mation of positive instances but also contains the semantic
information of negative ones. Overall, we extract supervised
signals with intra- and inter-instance correlations from the
teacher model via knowledge distillation. Then, the supervised
signal S ∈ [0, 1]

n×n of soft label similarity is utilized to guide
student model training to construct a reliable yet discriminative
semantic representation space.

C. Ranking Loss of Student Model

To clearly explain the bi-directional retrieval mechanism
of video-text matching, we follow the implementation of
pair-wise ranking loss in some previous works [1], [4], [17],
[19]. Here, in a batch-size, V and T indicate the input feature
representation of video and text, respectively. Concretely, for
a given quadric input (V +, T +, V −, T −), which contains
visual and textual feature representation vectors, the positive

Fig. 4. An overview of examples about soft label similarity and hard label
similarity.

video-text pairs (V +, T +) will be pulled closer, while the
hard negative video-text pairs (V +, T −) and (T +, V −) will
be pushed further than the pre-defined marginal 1. That is,
the pair-wise ranking loss can be written as:

Lrank =

video anchor︷ ︸︸ ︷[
1 + S(V +, T −) − S(V +, T +)

]
+

[
1 + S(T +, V −) − S(T +, V +)

]︸ ︷︷ ︸
text anchor

(1)

where S(·, ·) represents the distance measurement criterion,
we adopt cosine similarity in the experiment. For a query
V + as the “video anchor”, whose corresponding text sentence
description should have a higher similarity. Also, with a query
T + as the “text anchor”, we expect the semantically relevant
video candidates to rank higher. The pair-wise ranking loss is
a basic matching strategy, although widely used, it focuses on
the distance between global feature representations of video
and text (as shown in Eq. (1)), thus it is sometimes unsuitable
for video-text retrieval in real-world applications. For example,
given several video clips with slightly different semantics, the
model may output similar feature representations, resulting in a
spurious correlation with the non-corresponding text. Namely,
text annotations of the corresponding videos are not equally
reliable as the “positive pairs” in the pair-wise ranking loss.

As a result, to maintain the reliable yet discriminative
semantic space, inspired by the success of knowledge distil-
lation and contrastive learning in cross-modal retrieval [18],
[24], [28], we propose a novel framework for video-text
matching, called MCKD, which can transfer robust and struc-
tural inter-sample information by knowledge distillation, reg-
ularizing the cross-modal joint semantic space in parallel via
the pair-wise ranking loss.

D. Multimodal Contrastive Learning of Teacher Model

To learn a reliable visual-text embedding space U , in which
the samples of different modalities can be directly compared
with each other, the existing methods tend to learn m modality-
specific feature representation functions {gi : Ni 7→ U}

m
i=1 and

the gi can be the feature representation with arbitrary parame-
ters for the i-th modality. Then, suppose that given some data
samples ni

j (including video, text, audio, and others) of j-th
instance, the feature representation vector ui

j of all modalities
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data can be calculated by

ui
j = gi

(
ni

j

)
∈ RL (2)

where L is the dimension of representation space of visual-
textual. It’s worth noting that, similar to the prior works, in the
case of unimodal data scenario (e.g., video or text), the feature
representation can be obtained via Eq. (2). Thus standard
contrastive learning loss of each sample instance n j can be
defined as:

Lc =

exp
(

1
τ

(
ua

j

)T
ub

j

)
∑n

j=1[exp
(

1
τ

(
ua

j

)T
ua

j

)
+ exp

(
1
τ

(
ua

j

)T
ub

j

)
]

(3)

where τ is a temperature hyperparameter (following [24], [25],
[37], [38]), n is the batch-size of sample pairs, j ∈ [1, n],{
ua

1, . . . , ua
n
}

and
{
ub

1, . . . , ub
n
}

denote the feature representa-
tions of two types of data augmentation for sample data n j . For
feature representation ua

j , its corresponding augmented sample
representation is ub

j to form positive pairs (ua
j , ub

j ) and leave
other pairs to be negative.

As mentioned above, unimodal data contrastive training is
implemented in data augmentation. In contrast, multimodal
data is intrinsically composed of multiple modalities that can
naturally utilize the data of each modality in the instance to
maximize mutual information. Inspired by recent works [24],
[34], [39], we propose an instance-level multimodal contrastive
loss, which explicitly and fully considers the intra-modal
distribution to improve mutual information and suppress the
unreliable semantic text representation intra-instances. Specif-
ically, according to the assumption of “video/text group” (that
is, each “video/text group” is a distinct instance category and
each instance contains data for both video and text modalities).
We first define the probability that ni

j belongs to the j-th in
a sample instance containing m modalities data as follows:

P
(

j | ni
j

)
=

∑m
i=1 exp

(
1
τ

(
ui

j

)T
ui

j

)
∑m

i=1
∑n

j=1 exp
(

1
τ

(
ui

j

)T
ui

j

) (4)

where τ is a temperature hyperparameter (following [24], [25],
[37], [38]), since there are only two modalities of data in our
work, namely, videos and texts, the m = 2.

Accordingly, to bridge the semantic gap of cross-modal
data and excavate the differences between instance sam-
ples, our MCKD model makes the multimodal data (includ-
ing video and text in this work) from the same instance
(e.g.,

{
ni

j

}m

i=1
for the j-th instance) close to each other

(a.k.a., minimizing the probabilities), while the samples
from distinct instances (e.g.,

{
ni

l
}

l ̸= j for the j-th instance)
push away (a.k.a., maximizing the probabilities). For a
simplified formal description, the multimodal contrastive
loss of our MCKD model can be formulated as maximiz-
ing a joint probability

∏m
i=1

∏n
j=1 P

(
j | ni

j

)
, which works

by a mechanism equivalent to minimizing the negative

log-likelihood estimation [24], [25]:

Lmc = −
1
n

m∑
i=1

n∑
j=1

log
(

P
(

j | ni
j

))
(5)

Consequently, by minimizing Eq. (5), semantically relevant
positive samples will be pulled closer (a.k.a., considered as
the data belongs to the same instance, e.g.,

{
ni

j

}m

i=1
for ni

j ),
while negative ones will be pushed apart (a.k.a., considered
as the data not to belong to an instance, e.g.,

{
ni

l
}

l ̸= j for ni
j )

in the joint semantic representation space of visual-text.

E. Objective Function

The overall loss function of our proposed MCKD model
can be written as follows:

L = αLrank + (1 − α)Lmc (6)

The MCKD model employs a stochastic gradient descent
optimization algorithm, Adam [24], [40], to minimize the
joint loss function L under a batch-to-batch iteration manner.
Hence, our model can maximize the consistency of mutual
information between the intrinsic co-occurrence modalities to
bridge the heterogeneous gap between different modalities and
excavate the discrimination from intra- and inter-instance, thus
maintaining the reliable yet discriminative joint semantic space
of visual-text.

IV. EXPERIMENTAL SETTINGS AND BASELINES

In this section, we introduce the four public benchmark
datasets, evaluation protocols, implementation settings, and
baselines.

A. Datasets

The MSR-VTT [20] dataset consists of 10k videos in
which each video lasts 10 to 30 seconds and corresponds to
20 natural text descriptions. We follow the common splitting
for experiments: 6573 videos are used for training, 497 and
2990 for validation and testing respectively.

The TGIF [21] dataset is composed of videos in GIF
format, where each video corresponds to 1∼3 natural text
descriptions. We follow the official splitting experiments:
79451 videos are used for training, 10651 and 11310 for
validation and testing respectively.

The VATEX [3] dataset consists of 34991 videos in which
each video has 10 natural text descriptions in English and
Chinese, respectively. We follow the common splitting exper-
iments: 25991 videos are used for training, 3000 and 6000 for
validation and testing respectively. It is worth noting that,
we only employ the English sentence description correspond-
ing to each video in our experimental settings.

The Youtube2Text [22] dataset contains 1970 videos in
which each video has 40 natural text descriptions. We follow
the official splitting experiments: 1200 videos are used for
training, 100 and 670 for validation and testing respectively.
In our work, we leverage the test set of Youtube2Text to eval-
uate the generalization performance of the proposed MCKD.
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B. Evaluation Protocols

For video-text retrieval on the public benchmark, we employ
three common evaluation indicators to measure the perfor-
mance of this proposed MCKD, namely, Recall at K (R@K),
Median Rank (MedR), and Mean Rank (MnR). Here, R@K
represents the possibility that the true match occurs in the
top-K of the rank list, we set K = 1, 5, and 10 via the
following tradition. While the MedR and the MnR are median
rank and average rank of the retrieved rank list are closest to
the ground truth results respectively, with a lower score being
better. We also utilize the sum of all R@K as rsum to measure
the overall performance of our MCKD.

rsum = R@1 + R@5 + R@10︸ ︷︷ ︸
Text→Video

+ R@1 + R@5 + R@10︸ ︷︷ ︸
Video→Text

(7)

C. Implementation Details

The experiments are conducted on a platform of config-
uration with Ubuntu18.04, Intel i7-9700KF CPU@3.60GHz,
and two Nvidia GeForce RTX-2080Ti GPUs. Similar to [1],
[4], [16]: for video encoding, we employ the pre-trained
ResNet [41] as the backbone network to extract frame-level
feature representations of MSR-VTT and TGIF, adopting the
I3D [42] video feature representation provided by the official
of VATEX. For text encoding, we follow the practice of prior
work, which sets the word embedding size to 300, while
adopting the pre-trained glove embedding [43] as the backbone
of the encoder for initialization.

For training, we adopt the general optimizer, ADAM [24],
[40], to train our model and set the initial learning rate to
1×10−3. Furthermore, similar to [19], we implement a two
stages training strategy in which the model trained within
each step is used as the warm-up model for the next step.
Specifically,

• Stage I: We freeze the pre-trained weights of the video-
text dual-tower backbone network and fine-tune the
remaining parts by only employing the proposed Lmc.
This strategy can suppress ambiguous text semantic rep-
resentations, which can provide reliable and structured
inter-instance signals.

• Stage II: Next, when the Stage I converges, we fine-
tune our MKCD model via interaction distillation (that is,
combining Lmc and Lrank) on the video-text matching.
Namely, the knowledge distillation module is adopted to
transfer the reliable and structural inter-instance informa-
tion.

For testing, we respectively select the epoch numbers (a.k.a.,
epoch=37 on MSR-VTT, epoch=46 on TGIF, and epoch=43
on VATEX) with the best rsum on the three validation sets for
inference.

D. Baselines

We evaluate the superiority of this proposed MCKD model
by comparing it with two paradigms (a.k.a., graph-free and
graph-based) that include 14 SoTA methods in video-text
matching. Briefly, the differences in technical components and
functional modules are shown in Appendix A.

1) Graph-Free Paradigm: VSE [44]: It is a SoTA
cross-modal retrieval model and is also regarded as a strong
baseline in text-video or text-image retrieval tasks.

VSE++ [45]: An improved version of VSE, which utilizes
a novel loss based on augmented data and fine-tuning to
significantly improve cross-modal retrieval performance.

W2VV [30]: W2VV can transform natural language state-
ments into meaningful visual feature representations, that
is, the relevant video-text pairs will be pulled closer, while
irrelevant ones will be pushed apart.

DualEn [5]: Mean pooling, biGRU, and CNN are lever-
aged to realize the visual-text pairs coarse-to-fine-grained and
spatial-temporal feature representations.

S2Bin [46]: Since video contains complex spatial-temporal
features, an effective spatial-temporal video encoder and text
encoder are designed in S2Bin to learn fine-grained video cues
information and text discrimination information, respectively.

DualEn* [31]: An improved version of DualEn [5], which
employs a better sentence encoding strategy and an improved
triplet ranking loss.

PSM [15]: It leverages progressive semantic matching to
optimize the visual-text joint semantic representation space.

T2VLAD [11]: The global-to-local alignment framework is
proposed, which enables the fine-grained feature representa-
tion compact and also reduces the complexity and computa-
tional cost of the interactions between each video-text pair.

2) Graph-Based Paradigm: ViSERN [32]: It utilizes graph
convolutional networks based on random walk rules to learn
semantic inference for video-text cross-modal retrieval, and
then improves the alignment of video-text representations.

HGR [4]: The graph convolutional network is used to model
the hierarchical representations of video and text respectively
and the alignment of video-text pairs is implemented at three
hierarchies of visual-text embedding common space.

HANet [16]: It employs multi-level video-text alignment
to compensate for the asymmetry of cross-modal feature
representation.

HCGC [1]: Multi-hierarchy graph consistency learning is
leveraged to bridge the semantic gap between video-text cross-
modal retrieval.

QAMF [17]: To realize adaptive fusion for video-text
retrieval tasks, QAMF proposes a query-adaptive fusion mech-
anism to enable differential fusion of multi-level semantic
representation.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results on
four datasets to assess our MCKD by making comparisons
with various SoTA baselines. To be specific, we attempt to
answer 5 research questions (RQs) as our evaluation goals in
experiments:

• RQ1: What is the performance of our MCKD as com-
pared to various SoTA baseline methods?

• RQ2: How do the two stages training strategy, the Lrank
and the Lmc in our MCKD affect the video-text matching
performance?

• RQ3: How does the proposed Lmc influence the distri-
bution of positive pairs and negative pairs?
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TABLE II
VIDEO-TEXT BI-DIRECTIONAL CROSS-MODAL RETRIEVAL COMPARED WITH SoTA BASELINES ON MSR-VTT. HERE, “-” DENOTES THAT NO

EXPERIMENTAL RESULTS WITH THE SAME SETTINGS ARE AVAILABLE. THE HIGHEST SCORE IS SHOWN IN BOLD

• RQ4: What is the generalization capacity of our proposed
MCKD model on the unseen dataset, that is, zero-shot
tasks on the Youtube2Text dataset?

• RQ5: In the overall loss function, what is the influence
of different α values on the performance of our MKCD
model?

A. Comparison With the SoTAs

To answer RQ1, we compare the performance of our
MCKD with all the above baselines in video-text bi-directional
retrieval on different datasets, as shown in Table II and
Table III. For fairness of comparison, we implement the
code and feature representations released by some methods.
Meanwhile, we directly cite numbers from the original paper
whenever appropriate. Table II demonstrates the results of our
MCKD and the compared counterparts on MSR-VTT, we can
draw the following two observations: 1) Our MCKD yields
SoTA performance over all baselines, including the traditional
and promising video-text retrieval methods. Compared with
two promising counterparts, HGR and HCGC, our proposal
is outstanding to them. Both methods implement hierarchical
graph reasoning for fine-grained video-text matching. Yet, the
HGR can hardly explore the video-text hierarchical matching
strategy. In our MCKD, the multimodal contrastive loss is
adopted to model the invariance of multimodal data intra-
instance. While the HCGC jointly models multiple graph
consistency learning in video-text cross-modal matching, its
improved performance clearly demonstrates the advantages of
relying on inter-modal and intra-modal relationship interac-
tions. 2) The MCKD can also outperform the SoTA com-
petitors, DualEn*, PSM, and T2VLAD in all indicators that
include R@1, R@5, R@10, and rsum. Particularly, the rsum
index reflecting the overall retrieval quality of the model is
boosted by a large margin, relative +21.5%, +14.7%, and
+6.9%, respectively.

As shown in Table III, the performance comparison between
our MCKD and other methods on TGIF and VATEX. One can
see that the MCKD consistently achieves the best performance
compared to its counterparts on TGIF. It’s worth noting that

TABLE III
TEXT-TO-VIDEO RETRIEVAL COMPARISON WITH SoTA BASELINES ON

THE TGIF AND VATEX DATASETS. HERE, “-” DENOTES THAT NO
EXPERIMENTAL RESULTS WITH THE SAME SETTINGS ARE AVAIL-

ABLE. THE HIGHEST SCORE IS SHOWN IN BOLD

the same methods have lower metrics than those in Table II,
which means the TGIF dataset is more complex than MSR-
VTT. Even so, the MCKD can yield R@K (K = 1, 5, 10)
of 6.8%, 18.7% and 25.6%, respectively. On VATEX, the
MCKD outperforms all listed competitors again and keeps the
performance of 39.6%, 77.4%, and 85.4% in R@K (K = 1, 5,
10), compared to 36.8%, 73.6%, and 83.7% of DualEn* [31].

B. Ablation Study

To answer RQ2, we conduct a series of ablation studies
to investigate the contributions of different components (i.e.,
two-stage training strategy, Lrank , and Lmc) on MSR-VTT.
The experimental results are shown in Table IV that one can
draw the following two conclusions:

• Regarding the training strategy, we respectively adopt
Lmc and Lrank to evaluate performance under freezing
pre-trained weights of dual-tower backbone in Stage I.
As we can see from the top two rows of Table IV, the
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TABLE IV
COMPARISON BETWEEN OUR MCKD (FULL VERSION) AND ITS FOUR COUNTERPARTS (NAMELY, TWO VARIATIONS UNDER STAGE I AND TWO

VARIATIONS OF MCKD UNDER STAGE II) ON THE MSR-VTT DATASET. THE HIGHEST SCORE IS SHOWN IN BOLD

TABLE V
GENERALIZATION CAPACITY ON UNSEEN YOUTUBE2TEXT TEST SET UTILIZING VARIANT MODELS ON MSR-VTT. THE HIGHEST SCORE

IS SHOWN IN BOLD

Fig. 5. We extract feature representations from randomly selected 100 video–
text pairs in MSR-VTT, only using the Lrank model and only using the Lmc
model under Stage II, respectively.

Lmc achieves more promising results. Since the Lrank
focuses on the distance between global representations of
video and text, there is ambiguity in semantic boundaries
between texts describing different videos, which may
bring a spurious correlation between texts and their non-
corresponding videos. As we expected, the Lmc can
maximize the consistency of mutual information between
the intrinsic co-occurrence modalities to bridge the het-
erogeneous gap.

• In Stage II, only using Lrank or Lmc continuously out-
performs Stage I. Even better than some SoTA baselines,
which are DualEn [5], S2Bin [46], and HGR [4]. Further-
more, compared with models only using Lrank or Lmc,
the full MCKD with two losses provides higher perfor-
mance, which indicates that multimodal contrastive loss
can maintain the reliable yet discriminative visual-text
joint semantic space and transfer the reliable and struc-
tural inter-instance information.

C. Dual-Loss

To answer RQ3, we compare the distribution of video-text
feature representation from dual-loss (a.k.a., Lrank and Lmc),

to investigate that the Lmc can learn intra-modal discriminative
feature representations and transfer the reliable and structural
inter-instance information for Lrank . As shown in Fig. 5 and
Fig. 6, we can draw the following two observations:

• In training Stage II, we randomly selected 100 video-text
pairs from the MSR-VTT dataset and used Lrank and
Lmc to extract the feature representations, respectively.
Meanwhile, as shown in Fig. 5, Pearson’s correlation
visualization was carried out for the feature representation
of video and text two modalities. Namely, the lower
Pearson’s correlation between two modalities of feature
representations indicates higher orthogonality. Since the
proposed Lrank explicitly takes into account the distance
of inter-instance sample, we observe that after Lrank
training, the Pearson’s correlation between two modali-
ties of feature representations is small. In effect, Lrank
encourages the model to find fine-grained details infor-
mation, to distinguish “video/text group” with similar
semantics.

• In addition, to demonstrate the distribution of positive
sample pairs and negative sample pairs in the semantic
space provided by different loss functions, following
the prior work [19], we also quantitatively visualize
the distribution P of intra-instance similarity and the
distribution Q of inter-instance similarity on MSR-VTT.
Since the ambiguous semantic boundaries between texts
to describe different videos can bring spurious correla-
tion between texts and their non-corresponding videos,
therefore, only using Lrank will achieve a relatively
large margin between the positive pairs and negative
pairs (that is, there exist many “hard” negative pairs
with high similarity in visual-text joint semantic space),
as shown in Fig. 6 (a). To be specific, we leverage the
quantitative indicator function (defined in [19], lower is
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TABLE VI
COMPARISON WITH PREVALENT BASELINES IN TERMS OF TECHNICAL COMPONENTS AND FUNCTIONAL MODULES

Fig. 6. The similarity (cosine distance) distribution of the positive pairs P and negative pairs Q on MSR-VTT. We show the result obtained by (a) using
Lrank only, (b) using Lmc only, and (c) full MCKD model (using dual-loss, namely, with Lrank and Lmc), respectively. Indicator Area is calculated as the
overlapping area between P and Q (defined in [19], lower is better).

better) to respectively calculate the index scores under
Lrank only using, Lmc only using, and full MCKD
(with Lrank and Lmc) model: Area(Lrank ) = 0.3246,
Area(Lmc) = 0.2714, and Area(MC K D) = 0.1673. That is,
the extent of feature representations separability can be
formalized as Area(MC K D) > Area(Lmc) > Area(Lrank )

in different embedding spaces. As a result, the proposed
MCKD model can provide a reliable yet discriminative
semantic representation space for video-text bi-directional
matching.

D. Generalization on Unseen Dataset

To answer RQ4, we assess the generalization capacity of
our proposed MCKD on the unseen dataset, that is, zero-shot
tasks on Youtube2Text. As we all know, the most promising
video-text retrieval models are mainly evaluated on test sets
derived from the original dataset. However, in real scenarios,
generalizing the trained model to out-of-domain (never seen)
data is also a crucial index to evaluate performance.

As such, we train models on the MSR-VTT dataset and then
test the trained models on the Youtube2Text testing split [22].
As shown in Table V, one can see that the performance of
our MCKD on Youtube2Text is still outstanding. Particular,

Fig. 7. Cross-modal retrieval performance of our MCKD in terms of R@1
scores versus different values of α on the MSR-VTT datasets.

compared with the results in Table II, both DualEn [5] and
VSE++ [45] have achieved promising performance on MSR-
VTT, which hardly generalize well on a new dataset. Fur-
thermore, a similar phenomenon can be observed in HGR [4]
model and HCGC [1] model. While our MCKD can yield
consistent benefits across different datasets (both in-domain
and out-of-domain) compared with other methods. Since our
proposal combines the advantages of two loss functions via
knowledge distillation, the model can improve the generaliza-
tion capacity of new compositions.
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E. Parameter Analysis

To answer RQ5, in training Stage II of the experiment,
we have tried to manually adjust the weight ratios between
Lrank and Lmc at a step size of 0.1, such as 0.1 and 0.9,
0.2 and 0.8, etc., to evaluate the impact of the trade-off hyper-
parameter ratio. As shown in Fig. 7, the results show that our
method can obtain stable performance in a relatively dense
range (i.e. 0.4 and 0.6, 0.5 and 0.5, 0.4 and 0.6) on the MSR-
VTT dataset. Therefore, the default weight hyper-parameter
ratio of 1:1 is adopted in our work.

VI. CONCLUSION

In this paper, we propose the MCKD model for instance-
level video-text retrieval, which generates a reliable and struc-
tural inter-sample soft-label signal by multimodal contrastive
loss and then transfers this signal to guide the pair-wise
ranking loss. Compared to models that only adopt pair-wise
ranking loss, our MCKD combines the advantages of two-loss
functions via a knowledge distillation module, which can
capture the semantic relationship between the textual features
and their corresponding visual features to build a robust yet
discriminative representation space. Extensive experiments on
four public datasets demonstrate the strength of our MCKD,
and we report competitive results compared with the SoTA
counterparts.

APPENDIX A
COMPARISON WITH THE BASELINE METHODS

In order to facilitate the comparison of our MCKD model
with the baseline methods, we briefly list the differences in
some technical components and functional modules. The com-
parison involves the type of paradigm, the multi-granularity
fusion, the video/text group, the knowledge distillation, and
the consistency learning. As shown in Table VI, one can draw
the following observations:

• Our MCKD model belongs to the graph-free paradigm,
which does not rely on hand-crafted multi-granularity rep-
resentation fusion or complex graph reasoning, it bridges
the heterogeneous gap of cross-modal data via an end-to-
end framework.

• Our MCKD model combines inter-modal and intra-modal
consistency learning through knowledge distillation to
construct a robust yet discriminative visual-text joint
semantic space, enabling better-curated and reliable pos-
itive and negative pairs.
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